
Learning Rational Subgoals from Demonstrations and Instructions

Zhezheng Luo*1, Jiayuan Mao*1, Jiajun Wu2,
Tomás Lozano-Pérez1, Joshua B. Tenenbaum1, Leslie Pack Kaelbling1

1 Massachusetts Institute of Technology 2 Stanford University

Abstract

We present a framework for learning useful subgoals that sup-
port efficient long-term planning to achieve novel goals. At
the core of our framework is a collection of rational subgoals
(RSGs), which are essentially binary classifiers over the envi-
ronmental states. RSGs can be learned from weakly-annotated
data, in the form of unsegmented demonstration trajectories,
paired with abstract task descriptions, which are composed of
terms initially unknown to the agent (e.g., collect-wood then
craft-boat then go-across-river). Our framework also discov-
ers dependencies between RSGs, e.g., the task collect-wood
is a helpful subgoal for the task craft-boat. Given a goal de-
scription, the learned subgoals and the derived dependencies
facilitate off-the-shelf planning algorithms, such as A∗ and
RRT, by setting helpful subgoals as waypoints to the plan-
ner, which significantly improves performance-time efficiency.
Project page: https://rsg.csail.mit.edu

Introduction
Being able to decompose complex tasks into subgoals is crit-
ical for efficient long-term planning. Consider the example
in Fig. 1: planning to craft a boat from scratch is hard, as it
requires a long-term plan going from collecting materials to
crafting boats, but it can be made easier if we know that hav-
ing an axe and having wood are useful sub-goals. Planning
hierarchically with these subgoals can substantially reduce
the search required. It is also helpful to understand the tem-
poral dependencies between these subgoals, such as having
wood being a useful subgoal to achieve prior to crafting boat
makes long-term planning much more efficient.

In this work, we propose Rational Subgoals (RSGs), a
framework for learning useful subgoals and their temporal
dependencies from demonstrations. Our system learns with
very weak supervision, in the form of a small number of un-
segmented demonstrations of complex behaviors paired with
abstract task descriptions. The descriptions are composed of
terms that are initially unknown to the agent, much as an
adult might narrate the high-level steps when demonstrating
a cooking recipe to a child. These action terms indicate im-
portant subgoals in the action sequence, and our agent learns

*These authors contributed equally.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to detect when these subgoals are true in the world, infer their
temporal dependencies, and leverage them to plan efficiently.

Illustrated in Fig. 1, our model learns from a dataset of
paired but unaligned low-level state-action sequences and
the corresponding abstract task description (collect-wood
then craft-boat then go-across-river). For each action term
o (e.g., collect-wood), our model learns a goal condition Go,
which maps any state to a binary random variable, indicat-
ing whether the state satisfies the goal condition. Given the
training data, we decompose the observed trajectory into frag-
ments, each of which corresponds to a “rational” sequence
of actions for achieving a subgoal in the description.

While this model-based approach enables great general-
ity in generating behaviors, it suffers from the slow online
computation. To speed up online planning, we compute a de-
pendency matrix whose entries encode which subgoals might
be helpful to achieve before accomplishing another subgoal
(e.g., having wood is a helpful subgoal for the task crafting
boat, and thus the entry (having wood, crafting boat) will
have a higher weight). During test time, given a final goal
(e.g., craft boat) and the initial state, a hierarchical search
algorithm is applied at both the subgoal level and the lower,
environmental-action level.

The explicit learning of subgoals and their dependency
structures brings two important advantages. First, the sub-
goal dependency allows us to explicitly set helpful subgoals
as waypoints for planners. This significantly improves their
runtime efficiency. Second, compared to alternative subgoal
parameterizations such as reward functions, subgoals in the
form of a state classifier allows us to use simple and efficient
planners. For example, in continuous spaces, we can use
Rapidly-exploring Random Trees (RRT) to search for plans
in the robot configuration space. These planers do not require
training and generalize immediately to novel environments.

We evaluate RSGs in Crafting World (Chen, Gupta, and
Marino 2021), an image-based grid-world domain with a
rich set of object crafting tasks, and Playroom (Konidaris,
Kaelbling, and Lozano-Perez 2018), a 2D continuous domain
with geometric constraints. Our evaluation shows that our
model clearly outperforms baselines on planning tasks where
the agent needs to generate trajectories to accomplish a given
task. Another important application of RSGs is to create a
language interface for human-robot communication, which
includes robots interpreting human actions and humans in-

Move
Right

Move
Down Collect

Move
Left Craft

Subgoal 1: collect-wood

Subgoal 2: craft-boat
()*+! = ,-./' ()*+! = ,-./' ()*+! = ,-./' ()*+! = #%&'

()*+" = ,-./' ()*+" = #%&'()*+" = ,-./'

Subgoal 1: collect-wood = %&'(! Subgoal 2: craft-boat = %&'("

(a)

(b)

Figure 1: Interpreting a demonstration and its description in terms of RSGs: (a) Each RSG is represented as a subgoal Go. (b)
The system infers a transition to the next subgoal if the G condition is satisfied. Such transition rules can be used to interpret
demonstrations and to plan for tasks that require multiple steps to achieve.

structing robots by specifying a sequence of subgoals. Our
model enables compositional generalization through flexible
re-composition of learned subgoals, which allows the robot
to interpret and execute novel instructions.

Rational Subgoal Learning and Planning
We focus on learning rational subgoals from demonstration
data and leveraging them for planning. Formally, our training
data is a collection of paired unsegmented demonstrations
(i.e., state and action sequences) and abstract descriptions
(e.g., collect-wood then craft-boat) composed of action terms
(collect-wood, etc.) and connectives (then, or). Our ultimate
goal is to recover the grounding (i.e., the corresponding sub-
goal specified by the action term) for each individual action
term. These subgoals will be leveraged by planning algo-
rithms to solve long-horizon planning problems.

We begin this section with basic definitions of the rational
subgoal representations and the language T L for abstract de-
scriptions. Second, we outline the planning algorithm we use
to refine high-level instructions in T L into environmental ac-
tions that agents can execute, given the RSGs. Although any
search algorithms or Markov Decision Process (MDP) solvers
are in principle applicable for our planning task, in this paper,
we have focused on a simple extension to the A* algorithm.
Next, we present the algorithm we use to learn RSGs from
data. Since we are working with unsegmented trajectories,
the learning algorithm has two steps. It first computes a ra-
tionality score for individual actions in the trajectory based
on the optimal plan derived from the A* algorithm. Then,
it uses a dynamic programming algorithm to find the best
segmentation of the trajectory and updates the parameters.
Finally, we describe a dependency discovery algorithm for
RSGs and apply it to solve planning tasks given only a single
goal action term (e.g., collect-gold), in contrast to the earlier
case where there are detailed step-by-step instructions.

We call our representation rational subgoals because our
learning algorithm is based on a rationality objective with

-

(a)) = + (b))! = , -./0 1 (d)) = , 203 1(c)) = , -./0 1 45 6
- 3456 1

- 1
- 1

2

7#

7$

7#

7$

7# 7$

- 3456 1
- 1

7# 1 3456 -
1 -

7$

Figure 2: Illustrative example of how finite state machines
(FSM) are constructed from task descriptions. The super-
starting node v0 and the super-terminal node vT are high-
lighted.

respect to demonstration trajectories, and our planning algo-
rithm chooses rational subgoals to accelerate the search.

Formally, a rational subgoal (RSG) is a classifier that
maps an environmental state s to a Boolean value, indicat-
ing whether the goal condition is satisfied at s. Each RSG
has an atomic name o (e.g., collect-wood), and the corre-
sponding goal classifier is denoted by Go. Depending on the
representation of states, Go can take various forms of neural
networks, such as convolutional neural networks (CNNs) for
image-based state representations.

In both learning and planning, we will be using an ab-
stract language to describe tasks, such as collect-wood then
craft-boat. These descriptions are written in a formal task lan-
guage T L. Syntactically, all atomic subgoals are in T L; and
for all t1, t2 ∈ T L, (t1 then t2), (t1 or t2), and (t1 and t2)
are in T L. Semantically, a state sequence s̄ satisfies a task
description t, written s̄ |= t when:

• If t is a RSG o, then the first state does not satisfy Go,
and the last state satisfies Go. Note that this implies that
the sequence s̄ must have at least 2 states.

• If t = (t1 then t2) then ∃0 < j < n such that
(s1, . . . , sj) |= t1 and (sj , . . . , sn) |= t2: task t1 should
be accomplished before t2.

• If t = (t1 or t2) then s̄ |= t1 or s̄ |= t2: the agent should
either complete t1 or t2.

• If t = (t1 and t2) then s̄ |= (t1 then t2) or s̄ |=
(t2 then t1): the agent should complete both t1 and t2,
but in any order (t1 first or t2 first)*.

Note that the relation s̄ |= t only specifies whether s̄ com-
pletes t but not how optimal s̄ is. Later on, when we define
the planning problem, we will introduce the trajectory cost.

Each task description t ∈ T L can be represented with a
non-deterministic finite state machine (FSM), representing
the sequential and branching structures. Each FSMt is a
tuple (Vt, Et, V It, V Gt) which are subgoal nodes, edges, set
of possible starting nodes and set of terminal nodes. Each
node corresponds to an action term in the description, and
each edge corresponds to a possible transition of changing
subgoals. Fig. 2 illustrates the constructions for syntax in T L,
and we provide the follow algorithm for the construction.
• Single subgoal: A single subgoal s is corresponding FSM

with a single node i.e. VIt = VGt = Vt = {s}, and
Et = ∅.

• t1 then t2: We merge FSMt1 and FSMt2 by merging their
subgoal nodes, edges and using VIt1 as the new starting
node set and VGt2 as the new terminal node set. Then, we
add all edges from VGt1 to VIt2 . Formally,

FSMt1 then t2 =

(Vt1 ∪ Vt2 , Et1 ∪ Et2 ∪ (VGt1 × VIt2),VIt1 ,VGt2),

where × indicates the Cartesian product, meaning that
each terminal node of FSMt1 can transit to any starting
node of FSMt2 .

• t1 or · · · or tn: Simply merge n FSMs without adding
any new edges. Formally,

FSMt1 or ··· or tn = (
⋃
i

Vti ,
⋃
i

Eti ,
⋃
i

VIti ,
⋃
i

VGti)

• t1 and · · · and tn: Build 2n−1n sub-FSMs over n lay-
ers: the i-th layer contains n ·

(
n−1
i−1

)
sub-FSMs each la-

beled by (s,D) where s is the current subgoal to complete
(so this sub-FSM is a copy of FSMs), and D is the set
of subgoals that have been previously completed. Then
for a sub-FSM (s1, D1) and a sub-FSM (s2, D2) in the
next layer, if D2 = D1 ∪ {s1}, we add all edges from ter-
minal nodes of the first sub-FSM to starting nodes of the
second sub-FSM. After building layers of sub-FSMs and
connecting them, we set the starting nodes to be the union
of starting nodes in the first layer and terminal nodes to
be the union of terminal nodes in the last layer.

Note that our framework requires the starting and terminal
nodes to be unique, but the construction above may output a
FSM with multiple starting/terminal nodes, so we introduce
the virual super starting node v0 and terminal node vT to
unify them.

*The operator and can be generalized be n-ary. In this case,
accomplishing them in any order is considered accomplishing the
composed task. For example, the task mine-wood and mine-gold
and mine-coal allows the agent to accomplish all three subgoals
in any order. Note that this is different from the specification with
parenthesis: (mine-wood and mine-gold) and mine-coal.

Skill 1 (!!): mine-gold Skill 2 (!"): craft-boat

!7 is completed. !8 is completed.The agent may make some
progress (mine wood for the
boat) towards !! even if !"
has not been completed yet.

Task: !" "#$% !#
Completing !!Completing !"Completing !!

Figure 3: An example of optimal interleaving subgoals: s1
is ”mine gold”, and s2 is ”craft boat”. It is valid that the
agent first goes to collect wood (for accompolishing s2), and
then mine gold (for accompolishing s1), and finally crafts
boat. In this case, the action sequences for completing s1 and
s2 are interleaved. However, they can are be recognized as
s2 then s2 because s1 is accomplished before s2.

Remark. In this paper, the language T L used for describ-
ing tasks covers LTLf , a finite fragment of LTL that does not
contain the always quantifier, so our fragment does not model
task specifications that contain infinite loops. Finite LTL for-
mulae can be converted to a finite automaton (De Giacomo
and Vardi 2013), represented using the FSM.

Execution steps for different subgoals can interleave.
RSGs does not simply run optimal policy for each individual
subgoal sequentially. Rather, the semantic of s1 then s2 is: s1
should be completed before s2. It does not restrict the agent
from making progress towards the subgoal before the subgoal
is completed. In some case, such interleaving is necessary to
obtain the globally optimal trajectory.

Consider the example shown in Figure 3, where s1 is
”mine-gold”, and s2 is ”craft-boat”. It is valid that the agent
first goes to collect wood (for accompolishing s2), and then
mine gold (for accompolishing s1), and finally crafts boat.
In this case, the action sequences for completing s1 and
s2 are interleaved. However, they can are be recognized as
s1 then s2 because s1 is accomplished before s2.

Planning with RSGs
We first consider the problem of planning an action sequence
that satisfies a given task description t written in T L. We
assume that the external world is well modeled as a deter-
ministic, fully observable decision process with a known
state space, an action space, a transition function, and a
cost function ⟨S,A, T , C⟩ and that we have a set of goal
classifiers Go parameterized by θ. Given a task t, we con-
struct an FSM representation and then compose it with the
environment process to obtain an FSM-augmented process
⟨St,At, Tt, Ct⟩. Concretely, St = S × Vt, where Vt is the
set of nodes of FSM constructed from task t. We then denote
each task-augmented state as (s, v), where s is the environ-
ment state, and v indicates the current subgoal. The actions
At = A ∪ FSMt, where each action either corresponds to a
primitive action a ∈ A or a transition in FSMt. An FSM tran-

(,-! = 0.3

(,-! = 0

(,-! = 0 (,-! = 0.5

(,-! = 0.3

(,-! = 0.6

(,-! = 0

(,-! = 0.4

(,-! = 0.3 (,-! = 0.6

(,-! = 0.4

(,-! = 0.6

(,-! = 0.6 (,-! = 0.7

(,-! = 0.9 (,-! = 0.9

(,-! = 0.7

(,-! = 0.8

!!

!"

(,-! = 0.8

!#: mine-gold &#

!$: mine-coal &$

!%: mine-wood &%

Figure 4: A running example of the FSM-A∗ algorithm for the task “(mine wood or mine coal) then mine gold.” For simplicity,
we only show a subset of states visited on each FSM node. The blue arrows indicate transitions by primitive actions (in this
example, each primitive action takes a cost of 0.1). The yellow arrows are transitions on the FSM, which can only be performed
when Gv(·) and Gv′(·) evaluates to False (in practice, the reward is computed as − (logGv(·) + log (1−Gv′(·)))). At the
super-terminal node vT , the state with minimum cost will be selected and we will back-trace the entire state-action sequence.

sition action indicates that the agent has achieved the current
subgoal and will proceed to the next subgoal. We further de-
fine Tt ((s, v), a) = (T (s, a), v) if a is a primitive action in
A, while Tt ((s, v), a) = (s, v′) if a = (v, v′) ∈ FSMt is an
edge in the FSM. The former are environmental actions. They
only change the environmental state s but do not change the
current subgoal v. The latter, namely FSM transitions, do not
change the environmental state, but mark the current subgoal
as completed and switch to the next one. Similarly, for the
cost function,

C′ ((s, v), a) =

C(s, a) if a ∈ A,

−λ (logGv(s; θ)+ if a = (v, v′) ∈ FSMt

log (1−Gv′(s; θ)))

where λ is a hyperparameter. The key intuition behind the
construction of Ct is that the cumulative cost from v0 to
vT is the summation of all primitive action costs added to
the log probability of the validity of subgoal transitions. At
each subgoal transition, the state s should satisfy the goal
condition of the current RSGs but should not satisfy the goal
condition of the next RSGs—which enforces the sequential
constraints specified in the task. In principle, when Gv are
Boolean-output classifiers, the cost is 0 for a valid transition
and∞ for an invalid transition. In practice, we approximate
the “soft” version of classifiers with neural networks: the
outputs are in [0, 1], indicating how likely those conditions
are to be satisfied.

Importantly, our formulation of the RSG planning problem
is different from planning for each individual action term and

stitching the sub-plans sequentially. Concretely, we are find-
ing a “globally” optimal plan instead of achieving individual
subgoals in a locally optimal way. Thus, we allow complex
behaviors such as making progress for a later subgoal to
reduce the total cost. We include detailed examples in the
supplementary material.

At the input-output level, our planner receives the a task
description t represented as an FSM, an environmental tran-
sition model T , and a cost function C, together with a set
of goal classifiers {Go} parameterized by θ. It generates a
sequence of actions ā that is a path from (s0, v0) to (sT , vT)
and minimizes the cumulative action costs defined by Ct.
Here, s0 is the initial environmental state, v0 is the initial
state of FSMt, sT is the last state of the trajectory, and vT is
the terminal state of FSMt.

We make plans using slightly modified versions of A∗

search, with a learned domain-dependent heuristic for pre-
viously seen tasks and a uniform heuristic for unseen tasks.
This algorithm can be viewed as doing a forward search to
construct a trajectory from a given state to a state that satisfies
the goal condition. Our extension to the algorithms handles
the hierarchical task structure of the FSM.

Our modified A∗ search maintains a priority queue of nodes
to be expanded. At each step, instead of always popping the
task-augmented state (s, v) with the optimal evaluation, we
first sample a subgoal v uniformly in the FSM, and then
choose the priority-queue node with the smallest evaluation
value among all states (·, v). This balances the time allocated
to finding a successful trajectory for each subgoals in the task
description.

Our hierarchical search algorithm also extends to continu-
ous domains by integrating Rapidly-Exploring Random Trees
(RRT) (LaValle et al. 1998). We include the implementation
details in the supplementary material. Any state-action se-
quence produced by planning in the augmented model is
legal according to the environment transition model and is
guaranteed to satisfy the task specification t.

Example. Fig. 4 shows a running example of our FSM-A∗

planning given the task “mine wood or mine coal then mine
gold” from the state s0 (shown as the left-most state in the
figure).

1. At the beginning, (s0, v0) is expanded to the node v1:mine
wood and v2:mine coal with FSM transition actions at no
cost.

2. We expand the search tree node on v1 and v2 and compute
the cost for reaching each states on v1 and v2.

3. For states that satisfy the goal conditions for v1 and v2
(i.e., G1 and G2, respectively, and circled by green and
blue boxes) and the initial condition for v3 (i.e., 1−G3),
we make a transition to v3 at no cost (the states that do
not satisfy the conditions can also be expanded to v3 but
with a large cost.

4. Then search can be done in a similar way at v3 and the
states at v3 that satisfy G3 can reach vT .

5. For all states at vT , we back-trace the state sequence with
the minimum cost.

Learning RSGs from Unsegmented Trajectories and
Descriptions
We learn RSGs from weakly-annotated demonstrations, in the
form of unsegmented trajectories and paired task descriptions.
The training dataset D contains tuples (s̄, ā, t) where s̄ is a
sequence of environmental states, ā is a sequence of actions,
and t ∈ T L is a task description.

Our goal is to recover the grounding of subgoal terms from
these demonstrations. At a high level, our learning objective
is to find a set of parameters for the goal classifiers Go that
rationally explain the demonstration data: the actions taken
by the demonstrator should be “close” in some sense to the
optimal actions that would be taken to achieve the goal. Let
θ denote the collection of parameters in {Go}. Thus, our
training objective takes the following form:

θ∗ = argmax
θ

1

|D|
∑

(s̄,ā,t)∈D

score (s̄, ā, t; θ) . (1)

The scoring function score combines the rationality of the
observed trajectory with an additional term that emphasizes
the appropriateness of FSM transitions given t:

score(s̄, ā, t; θ) := max
v̄
{ log∏

i

Rat (si, vi, ai, t; θ)+∑
(vi,vi+1)∈

FSM transitions

{
logGvi(si; θ) + log

(
1−Gvi+1(si; θ)

)}}
(2)

The rationality score measures the likelihood that the ac-
tion a ∈ At in state (s, v) would have been chosen by a
nearly-optimal agent, who is executing a policy that assigns
a probability to an action based on the optimal cost-to-go for
task t in the FSM-augmented model after taking it:

Rat (s, v, a, t; θ) :=
exp (−α · Jt(s, v, a; θ))∫

x∈A′ exp (−α · Jt(s, v, x; θ))
, (3)

where α is a hyperparameter called inverse rationality. The
integral is a finite sum for discrete actions and can be approx-
imated using Monte Carlo sampling for continuous actions.
If α is small, the assumption is that the demonstrations may
be highly noisy; if large, then they are near optimal.

The cost-to-go (analogous to a value function) is defined
recursively as

Jt(s, v, a; θ) = Ct ((s, v), a) + max
a′∈At

Jt (T ′ ((s, v), a) , a; θ) .

(4)

It need not be computed for the whole state space; rather, it
can be computed using the planner on a tree of relevant states,
reachable from (s0, v0).

Figure 5 and Algorithm 1 summarize the learning process
of RSGs. First, we perform a A∗ search (or RRT for continu-
ous domains) from the trajectory. Then, we backtrack in the
search tree/RRT to compute the shortest distance from each
node to the terminal state, Jt, so that Rat(si, vi, ai, t; θ) can
be evaluated along the trajectory s̄, ā.

At learning time, we can observe the environmental state
and action sequence, but we cannot observe the FSM states or
transitions. To efficiently find the optimal FSM states and tran-
sitions, given an environment state and action sequence as
well as goal classifiers parameterized by the current θ, we use
a dynamic programming method. Specifically, we will first la-
bel the FSM nodes from 0 to T by sorting them topologically.
Next, we can use a two-dimensional dynamic programming
with the transition equations based on Rat and Gv can find
v̄ that maximizes score. Concretely, let f [i, j] denote the
maximum score by aligning the trajectory si, ai, si+1, · · ·
with the last j nodes of the FSM. The dynamic programming
algorithm iterates over i in the reversed order. At each step,
it tries to either assign the current (si, ai) pair to the cur-
rent FSM node j, or to create a new transition from another
FSM node k to j. We present the detailed algorithm in the
supplementary material. Although the transition model we
have discussed so far is deterministic, the methods can all
be extended straightforwardly to the stochastic case, as also
described in the supplement.

To improve the optimization, we add a contrastive loss
term, encoding the idea that, for each demonstration (s̄, ā),
the corresponding task description t should have a higher
rationality score compared to an unmatched task description
t′, yielding the final objective to be maximized:

𝐺!

Rational
Subgoals

𝑠̅ 𝑎$𝑡

TrajectoryTask

Search: A*/RRT

Compute 𝐽!(𝑠, 𝑣, 𝑎)

Dynamic Programming for 𝑠𝑐𝑜𝑟𝑒(𝑠̅, 𝑎-, 𝑡)

ℒ
Back
Propagation

Figure 5: An overview of the training
paradigm for RSGs. See text for details.

Algorithm 1: Overview of the training paradigm in pseudocode.
Initiate the goal condition Go(·; θ)
for (s̄, ā, t) ∈ D do

for t′ in candidate task descriptions do
Apply A* search from all states in s̄ with task t′ to compute a tree T .
for each node (s, v, a, t′) ∈ T in reversed topological order do

Compute Jt′(s, v, a; θ) on the node using Eq. 4.
end for
for each node (s, v, a, t′) ∈ T in reversed topological order do

Compute Rat (s, v, a, t′; θ) for each tree node using Eq. 3.
end for
Compute score(s̄, ā, t′; θ) using Eq. 2 based on Rat values of nodes in T .

end for
Compute the training objective J (θ) using the score of all candidate task

descriptions t′ using Eq. 5.
Update θ using gradient descent by maximizing J (θ).

end for

mine-gold

collect-wood
craft-boat!! !"

Task: (collect-wood or mine-good) then craft-boat

Figure 6: An example of the value function for task-
augmented states on a simple FSM. mina∈A Jt (s, v, a) are
plotted at each location at each FSM node. Deeper color in-
dicates larger cost. Red boxes and dotted lines illustrate the
goal and a rational trajectory for each subgoal.

J (θ) =
∑

(s̄,ā,t)∈D

(score(s̄, ā, t; θ)

+ γ · log exp (β · score(s̄, ā, t; θ))∑
t′ exp (β · score(s̄, ā, t′; θ))

)
, (5)

where t′s are uniformly sampled negative tasks in T L. This
loss function is fully differentiable w.r.t. θ, which enables
us to apply gradient descent for optimization. Essentially,
we are back-propagating through two dynamic programming
computation graphs: one that computes Jt based on planning
optimal trajectories given goal classifiers parameterized by
θ, and one that finds the optimal task-state transitions for the
observed trajectory.

RSG Dependency Discovery and Planning
Next, we describe our algorithm for planning with a sin-
gle, final goal term (e.g., craft-boat) instead of step-by-step

instructions. Since directly planning for the goal based on
the corresponding goal classifier can be very slow due to
the long horizon, our key idea here is to leverage the RSGs
learned from data to perform a bilevel search. Our algorithm
begins with discovering a dependency matrix between RSGs
during training time. At performance time, we first use the
discovered dependency model to suggest high-level plans, in
the form of step-by-step instructions in T L. Next, we use
these instructions to plan for environmental actions using our
planning algorithm.

For each possible subgoal o, we evaluate the associated
learned goal classifier Go over all states along training tra-
jectories that contain o. Next, we compute first(s̄, o) as the
smallest index i such that Go(si) is true. If such i does
not exist (i.e., Go is never satisfied in s̄) or o is not men-
tioned in the task specification t associated with s̄, we de-
fine first(s̄, o) = ∞. For all tuples (s̄, o1, o2), we say o2 is
achieved before o1 if neither first(s̄, o1) nor first(s̄, o1) is
infinity, and first(s̄, o2) < first(s̄, o1).

Let bcount(o1, o2) be the number of s̄ ∈ D such that o2 is
achieved before o1 in s̄. We construct a dependency matrix d
by normalizing the bcount as:

d(o1, o2) ≜
bcount(o1, o2)∑
o′ bcount(o1, o′)

, (6)

where o′ sums over all RSGs.
The derived dependency matrix can be interpreted as the

probability that o2 is a precondition for o1. Now, recall that
our task is to find an action sequence ā that, starting from
the initial state s0, yields a new state sT that satisfies the
given goal action term g, such as craft-boat. Our high-level
idea is to leverage the dependency matrix to suggest possible
step-by-step instructions t, whose last action term is g. The
planning algorithm will follow the suggested instructions to
generate low-level plans ā.

Formally, we only consider instructions that are action
terms connected by the then connective. Denote a candidate

instruction t = o1 then o2 then · · · then ok. We define its
priority as:

priority(t) = λk
k−1∏
i=1

1−
k∏

j=i+1

(1− d(oj , oi))

 , (7)

where λ is a length bias constant which is set to 0.9 because
we prefer shorter instructions.

Given the candidate instructions, we run the planning al-
gorithm for these instructions. We prioritize instructions t
with high priorities priority(t), and these instructions are gen-
erated by a search approach (Algorithm 2) from the given
final goal. The limit of instruction length, length limit, is set
to 6 for our experiment.. For more complicated domains, a
promising future direction is to learn a full abstract planning
model (symbolic or continuous) based on the subgoal terms
learned from demonstrations.

Algorithm 2: Overview of the search algorithm given only
the final goal.

Build a priority queue of instructions H .
H ← {final goal}
while H is not empty do

t← H.pop()
Run A* search on task t.
if the A* search finds a solution then

Return the solution.
end if
if length(t) ≤ length limit then

for o ∈ O do
if o /∈ t and ∃o′ ∈ t.d(o′, o) > 0 then

H.push(o then t) # See Eq. 7.
end if

end for
end if

end while

Experiments
We compare our model with other subgoal-learning ap-
proaches in Crafting World (Chen, Gupta, and Marino
2021), a Minecraft-inspired crafting environment, and Play-
room (Konidaris, Kaelbling, and Lozano-Perez 2018), a 2D
continuous domain with geometric constraints.

Crafting World. In Crafting World, the agent can move in
a 2D grid world and interact with objects next to it, including
picking up tools, mining resources, and crafting items. Min-
ing in the environment typically requires tools, while crafting
tools and other objects have their own preconditions, such
as being close to a workstation or holding another specific
tool. Thus, crafting a single item often takes multiple subgoal
steps. There are also obstacles such as rivers (which require
boats to go across) and doors (which require specific keys to
open).

We define 26 primitive tasks, instantiated from templates
of grab-X, toggle-switch, mine-X, and craft-X. While gener-
ating trajectories, all required items have been placed in the

Figure 7: An illustration of
the Playroom environment
and a trajectory for the
task: turn-on-music then
play-with-ball then turn-
off-music.

agent’s inventory. For example, before mining wood, an axe
must be already in the inventory. In this case, the agent is
expected to move to a tree and execute the mining action. We
also define 26 compositional tasks composed of the afore-
mentioned primitive tasks. For each task, we have 400 expert
demonstrations.

All models are trained using tuples of task description t and
expert state-action sequences (s̄, ā). In particular, we train all
models on primitive and compositional tasks and test them
on two splits: compositional and novel. The compositional
split contains novel state-action sequences of previously-seen
tasks. The novel split contains 12 novel tasks, where primitive
tasks are composed in ways never seen during training (i.e.,
not in the 26 tasks from the compositional split).

Playroom. Our second environment is Play-
room (Konidaris, Kaelbling, and Lozano-Perez 2018),
a 2D maze with continuous coordinates and geometric
constraints. Fig. 7 shows an illustrative example of the
environment. Specifically, a 2D robot can make moves in
a small room with obstacles. The agent has three degrees
of freedom (DoFs): x and y direction movement, and a 1D
rotation. The environment invalidates movements that cause
collisions between the agent and the obstacles. Additionally,
there are six objects randomly placed in the room, which the
robot can interact with. For simplicity, when the agent is
close to an object, the corresponding robot-object interaction
will be automatically triggered.

Similar to the Crafting World, we have defined six primi-
tive tasks (corresponding to the interaction with six objects in
the environment) and eight compositional tasks (e.g., turn-on-
music then play-with-ball). We have designed another eight
novel tasks, and for each task, we have 400 expert demonstra-
tions. We train different models on rational demonstrations
for both the primitive and compositional tasks, and evaluate
them on the compositional and novel splits.

Baselines
We compare our RSGs, which learns goal-based represen-
tations, with two baselines using different underlying repre-
sentations: IRL methods learn reward-based representations,
and behavior cloning methods directly learn policies. The
implementation details are in the supplementary material.

Our max-entropy inverse reinforcement learning (IRL;
Ziebart et al. 2008) baseline learns a task-conditioned re-
ward function by trying to explain the demonstration. For
planning, we use the built-in deep-Q-learning algorithm. The
behavior cloning (BC; Torabi, Warnell, and Stone 2018) base-
line directly learns a task-conditioned policy that maps the

Model Task
Input

Env.
Tran.

Crafting World Playroom

Com. Novel Com. Novel

IRL Lang. Y 36.5 1.8 28.3 9.6
BC Lang. N 11.2 0.8 15.8 4.8
BC-FSM FSM N 5.2 0.3 38.2 31.5

RSGs FSM Y 99.6 97.8 82.0 78.2

Table 1: Results of the planning task, evaluated as the success
rate of task completion. IRL and BC take raw task specifica-
tion and process them with LSTM, while BC-FSM and RSGs
uses the FSM directly. RSGs and IRL use the environmental
transition model during training while BC and BC-FSM dot
not. The maximum number of expanded nodes for all plan-
ners is 5,000. All models are trained on the compositional
split, and tested on the compositional and the novel split.

current state and the given task to an environment primitive
action. BC-FSM is the BC algorithm augmented with our
FSM description of tasks. Compared with RSGs, instead of
segmenting the demonstration sequence based on rational-
ity, BC-FSM segments them based on how consistent each
fragment is with the policy for the corresponding action term.

Results
To evaluate planning, each algorithm is given a new task t,
either specified in T L, or as a black-box goal state classifier,
and generates a trajectory of actions to complete the task.
Planning with instructions. Table 1 summarizes the results.
Overall, RSGs outperforms all baselines. On the composi-
tional split, our model achieves a nearly perfect success rate
in the Crafting World (99.6%). Comparatively, although the
tasks have been presented during training of all baselines,
their scores remain below 40%.

On the novel split, RSGs outperforms all baselines by a
larger margin than on the compositional split. We observe
that since novel tasks contain longer descriptions than those
in the compositional set, all baselines have a success rate of
almost zero. Compared with IRL methods, the more com-
positional structure in our goal-centric representation allows
it to perform better. Meanwhile, a key difference between
behavior cloning methods (BC and BC-FSM) and ours is that
BC directly applies a learned policy, while our model runs an
A* search based on the learned goal classifier and leverages
the access to the transition model. This suggests that learning
goals is more sample-efficient than learning policies in such
domains and generalizes better to new maps.

Our model can be easily applied to environments with
image-based states, simply by changing the inputs of Io and
Go models to images. We evaluate our model in an image-
based Crafting World environment. It achieves 82.0% and
78.2% success rates on the compositional and novel splits,
respectively. Comparatively, the best baseline BC-FSM gets
38.2% and 31.5%. Details are in the supplementary material.

Planning with goals. We also evaluate RSGs on planning
with a single goal action term. These problems require a long
solution sequence, making them too difficult to solve with

a blind search from an initial state. Since there is no task
specification given, in order to solve the problems efficiently,
it is critical to use other dependent RSGs for search guidance.
We use 8 manually designed goal tests, each of which can
be decomposed into 2–5 subgoals. We run our hierarchical
search based on RSGs and the discovered dependencies.

We compare this method with two baselines: a blind
forward-search algorithm, and a hierarchical search based
on RSGs without discovered dependencies (i.e., by setting
the dependency matrix as a uniform distribution). We test
all three methods on 100 random initial states for each task.
Fig. 8 summarizes the result. Overall, RSGs with discovered
dependencies enables efficient searches for plans. On easier
tasks (2 or 3 subgoals), search with RSGs and dependencies
has a similar runtime as the baseline that searches without
dependencies. Both of them outperform the blind-search base-
line (about 2.4× more efficient when reaching a 70% success
rate). However, when the task becomes complex (4 or 5 sub-
goals), searching with RSGs and the discovered dependencies
significantly outperforms other alternatives. For example, to
reach a 70% success rate, searching with RSGs needs only
4,311 expanded nodes. By contrast, searching without RSGs
needs 19,220 (4.5×) nodes. Interestingly, searching with
RSGs but without discovered dependencies performs worse
than the blind-search baseline. We hypothesize that this is
because it wastes time on planning for unreasonable instruc-
tions. Overall, the effectiveness of RSGs with discovered
dependencies grows as the complexity of tasks grows.

Related Work
Modular policy learning and planning. Researchers have
been learning modular “policies” by simultaneously looking
at trajectories and reading task specifications in the form of
action term sequences (Corona et al. 2021; Andreas, Klein,
and Levine 2017; Andreas and Klein 2015), programs (Sun,
Wu, and Lim 2020), and linear temporal logic (LTL) formu-
las (Bradley et al. 2021; Toro Icarte et al. 2018; Tellex et al.
2011). However, they either require additional annotation
for segmenting the sequence and associating fragments with
labels in the task description (Corona et al. 2021; Sun, Wu,
and Lim 2020), or cannot learn models for planning (Tellex
et al. 2011). By contrast, RSGs learns useful subgoals from
demonstrations. We use a small but expressive subset of LTL
for task description, and jointly learn useful subgoals and
segment the demonstration sequence.

Our subgoal representation is also related to other mod-
els in domain control knowledge (de la Rosa and McIlraith
2011), goal-centric policy primitives (Park et al. 2020), macro
learning (Newton et al. 2007), options and hierarchical rein-
forcement learning (HRL; Sutton, Precup, and Singh 1999;
Dietterich 2000; Barto and Mahadevan 2003; Mehta 2011),
and methods that combine reinforcement learning and plan-
ning (Segovia-Aguas, Ferrer-Mestres, and Jonsson 2016;
Winder et al. 2020). However, the execution of subgoals
in RSGs is fundamentally different from options: each option
has a policy that we can follow to achieve the short-term goal,
while subgoals in RSGs should be refined with segments of
primitives by planning algorithms. Our planning algorithm is
similar to other approaches: (de la Rosa and McIlraith 2011;

4.5 × Efficiency4311 19220

3095

1230551

1182

2.5 × Efficiency2.1 × Efficiency

Figure 8: RSGs applied to planning with a final goal. We do evaluation on 3 groups of planning tasks in the Crafting World
environment. We use 100 random initial states for each task. Each search method can expand up to 25,000 nodes.

Botvinick and Weinstein 2014; Winder et al. 2020), but they
do not leverage discovered dependencies between subgoals.
Learning from demonstration. Learning from demonstra-
tion generally refers to building agents that can interact with
the environment by observing expert demonstrations (e.g.,
state-action sequences). Techniques for learning from demon-
stration can be roughly categorized into four groups: pol-
icy function learning (Chernova and Veloso 2007; Torabi,
Warnell, and Stone 2018), cost and reward function learn-
ing (Markus Wulfmeier and Posner 2015; Ziebart et al. 2008),
generative adversarial learning (Ho and Ermon 2016; Liu et al.
2022), and learning high-level plans (Ekvall and Kragic 2008;
Konidaris et al. 2012). We refer to Argall et al. (2009) and
Ravichandar et al. (2020) as comprehensive surveys. In this
paper, we learn useful subgoals that support planning, and
compare our model with methods that directly learn policies
and cost functions. Moreover, unlike those who use similari-
ties between different actions (Niekum et al. 2012) to segment
demonstrations, in RSGs, we segment the demonstration with
associate action terms by rationality assumptions of the agent.
Inverse planning. Our model is also related to inverse plan-
ning algorithms that infer agent intentions from behavior by
finding a task description t that maximizes the consistency
between the agent’s behavior and the synthesized plan (Baker,
Saxe, and Tenenbaum 2009). While existing work has largely
focused on modeling the rationality of agents (Baker, Saxe,
and Tenenbaum 2009; Zhi-Xuan et al. 2020) and more ex-
pressive task descriptions (Shah et al. 2018), our focus is on
leveraging the learned subgoals and their dependencies to
facilitate agent planning for novel tasks.
Unsupervised subgoal discovery. Our method is also related
to approaches for discovering subgoals from unlabelled tra-
jectories (Paul, Vanbaar, and Roy-Chowdhury 2019; Tang
et al. 2018; Kipf et al. 2019; Lu et al. 2021; Gopalakrish-
nan et al. 2021), mostly based on the assumption that the
trajectory can be decomposed into segments, and each seg-
ment corresponds to a subgoal. Some other approaches for
discovering subgoals are to detect “bottleneck” states (Men-
ache, Mannor, and Shimkin 2002; Şimşek, Wolfe, and Barto
2005) based on the state transition graphs. RSG differs from
these works in that we focus on learning the grounding of
action terms defined in task descriptions. Thus, RSGs are

associated with action terms and thus can be recomposed by
human users to describe novel tasks. It is a meaningful future
direction to combine learning from trajectory-only data and
trajectories with descriptions to improve the data efficiency.

Conclusion
We have presented a subgoal learning framework for long-
horizon planning tasks. The rational subgoals (RSGs) can be
learned by observing expert demonstrations and reading task
specifications described in a simple task language T L. Our
learning algorithm simultaneously segments the trajectory
into fragments corresponding to individual subgoals, and
learns planning-compatible models for each subgoal. Our
experiments suggest that our framework has strong composi-
tional generalization to novel tasks.

Limitation. The assumption of a deterministic environ-
ment has allowed us to focus on the novel RSG formulation
of subgoal models. For domains with substantial stochastic-
ity, the high-level concepts of RSGs could be retained (e.g.,
rationality), and algorithmic changes may be required such
as replacing maximum entropy IRL with maximum causal
entropy (Ziebart, Bagnell, and Dey 2010). Another limitation
of RSGs is that it can not leverage trajectories without la-
beled task descriptions. Future work may consider the jointly
learning of subgoals and subgoal structures of tasks (Vazquez-
Chanlatte et al. 2018; Chou, Ozay, and Berenson 2022).

Acknowledgement. We thank Yunyun Wang for giving ad-
vice on making figures. We thank all group members of
the MIT Learning & Intelligent Systems Group for help-
ful comments on an early version of the project. This work
is in part supported by NSF grant 2214177, AFOSR grant
FA9550-22-1-0249, ONR MURI grant N00014-22-1-2740,
the MIT-IBM Watson Lab, the MIT Quest for Intelligence,
the Center for Brain, Minds, and Machines (CBMM, funded
by NSF STC award CCF-1231216), the Stanford Institute
for Human-Centered Artificial Intelligence (HAI), and Ana-
log, Amazon, JPMC, Meta, Salesforce, and Samsung. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of our sponsors.

References
Andreas, J.; and Klein, D. 2015. Alignment-Based Composi-
tional Semantics for Instruction Following. In EMNLP.
Andreas, J.; Klein, D.; and Levine, S. 2017. Modular multi-
task reinforcement learning with policy sketches. In ICML.
Argall, B. D.; Chernova, S.; Veloso, M.; and Browning, B.
2009. A survey of robot learning from demonstration. Rob
Auton Syst., 57(5): 469–483.
Baker, C. L.; Saxe, R.; and Tenenbaum, J. B. 2009. Action
understanding as inverse planning. Cognition, 113(3): 329–
349.
Barto, A. G.; and Mahadevan, S. 2003. Recent advances in
hierarchical reinforcement learning. Discrete event dynamic
systems, 13(1): 41–77.
Botvinick, M.; and Weinstein, A. 2014. Model-based hierar-
chical reinforcement learning and human action control. Phi-
los. Trans. R. Soc. Lond., B, Biol. Sci., 369(1655): 20130480.
Bradley, C.; Pacheck, A.; Stein, G. J.; Castro, S.; Kress-
Gazit, H.; and Roy, N. 2021. Learning and Planning
for Temporally Extended Tasks in Unknown Environments.
arXiv:2104.10636.
Chen, V.; Gupta, A.; and Marino, K. 2021. Ask Your Hu-
mans: Using Human Instructions to Improve Generalization
in Reinforcement Learning. In ICLR.
Chernova, S.; and Veloso, M. 2007. Confidence-based policy
learning from demonstration using gaussian mixture models.
In AAMAS.
Chou, G.; Ozay, N.; and Berenson, D. 2022. Learning tem-
poral logic formulas from suboptimal demonstrations: theory
and experiments. Autonomous Robots, 46(1): 149–174.
Corona, R.; Fried, D.; Devin, C.; Klein, D.; and Darrell,
T. 2021. Modular Networks for Compositional Instruction
Following. In NAACL-HLT, 1033–1040.
De Giacomo, G.; and Vardi, M. Y. 2013. Linear temporal
logic and linear dynamic logic on finite traces. In IJCAI.
de la Rosa, T.; and McIlraith, S. 2011. Learning domain
control knowledge for TLPlan and beyond. In ICAPS 2011
Workshop on Planning and Learning.
Dietterich, T. G. 2000. Hierarchical reinforcement learning
with the MAXQ value function decomposition. JAIR, 13:
227–303.
Dong, H.; Mao, J.; Lin, T.; Wang, C.; Li, L.; and Zhou, D.
2019. Neural Logic Machines. In ICLR.
Ekvall, S.; and Kragic, D. 2008. Robot learning from demon-
stration: a task-level planning approach. IJARS, 5(3): 33.
Gopalakrishnan, A.; Irie, K.; Schmidhuber, J.; and van
Steenkiste, S. 2021. Unsupervised Learning of Temporal
Abstractions using Slot-based Transformers. In Deep RL
Workshop at NeurIPS.
Ho, J.; and Ermon, S. 2016. Generative adversarial imitation
learning. In NeurIPS.
Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural Comput., 9(8): 1735–1780.

Kipf, T.; Li, Y.; Dai, H.; Zambaldi, V.; Sanchez-Gonzalez, A.;
Grefenstette, E.; Kohli, P.; and Battaglia, P. 2019. Compile:
Compositional imitation learning and execution. In ICML.
Konidaris, G.; Kaelbling, L. P.; and Lozano-Perez, T. 2018.
From skills to symbols: Learning symbolic representations
for abstract high-level planning. JAIR, 61: 215–289.
Konidaris, G.; Kuindersma, S.; Grupen, R.; and Barto, A.
2012. Robot learning from demonstration by constructing
skill trees. IJRR, 31(3): 360–375.
LaValle, S. M.; et al. 1998. Rapidly-exploring random trees:
A new tool for path planning. Technical report, Computer
Science Department, Iowa State University.
Liu, M.; Zhu, Z.; Zhuang, Y.; Zhang, W.; Hao, J.; Yu, Y.;
and Wang, J. 2022. Plan Your Target and Learn Your Skills:
Transferable State-Only Imitation Learning via Decoupled
Policy Optimization. In ICML.
Lu, Y.; Shen, Y.; Zhou, S.; Courville, A.; Tenenbaum, J. B.;
and Gan, C. 2021. Learning task decomposition with ordered
memory policy network. In ICLR.
Markus Wulfmeier, P. O.; and Posner, I. 2015. Maximum
Entropy Deep Inverse Reinforcement Learning. In NeurIPS
Workshop.
Mehta, N. 2011. Hierarchical structure discovery and trans-
fer in sequential decision problems. Oregon State University.
Menache, I.; Mannor, S.; and Shimkin, N. 2002. Q-
cut—dynamic discovery of sub-goals in reinforcement learn-
ing. In European conference on machine learning, 295–306.
Springer.
Newton, M. A. H.; Levine, J.; Fox, M.; and Long, D. 2007.
Learning Macro-Actions for Arbitrary Planners and Domains.
In ICAPS.
Niekum, S.; Osentoski, S.; Konidaris, G.; and Barto, A. G.
2012. Learning and generalization of complex tasks from
unstructured demonstrations. In IROS. IEEE.
Park, D.; Noseworthy, M.; Paul, R.; Roy, S.; and Roy, N.
2020. Inferring task goals and constraints using bayesian
nonparametric inverse reinforcement learning. In JMLR.
Paul, S.; Vanbaar, J.; and Roy-Chowdhury, A. 2019. Learning
from trajectories via subgoal discovery. Advances in Neural
Information Processing Systems, 32.
Ravichandar, H.; Polydoros, A. S.; Chernova, S.; and Billard,
A. 2020. Recent advances in robot learning from demonstra-
tion. Annu Rev Control., 3: 297–330.
Segovia-Aguas, J.; Ferrer-Mestres, J.; and Jonsson, A. 2016.
Planning with partially specified behaviors. In Artificial
Intelligence Research and Development, 263–272. IOS Press.
Shah, A.; Kamath, P.; Shah, J. A.; and Li, S. 2018. Bayesian
Inference of Temporal Task Specifications from Demonstra-
tions. In NeurIPS.
Şimşek, Ö.; Wolfe, A. P.; and Barto, A. G. 2005. Identifying
useful subgoals in reinforcement learning by local graph parti-
tioning. In Proceedings of the 22nd international conference
on Machine learning, 816–823.
Sun, S.-H.; Wu, T.-L.; and Lim, J. J. 2020. Program guided
agent. In ICLR.

Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between MDPs
and semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence, 112(1-2): 181–
211.
Tang, D.; Li, X.; Gao, J.; Wang, C.; Li, L.; and Jebara, T.
2018. Subgoal discovery for hierarchical dialogue policy
learning. arXiv preprint arXiv:1804.07855.
Tellex, S.; Kollar, T.; Dickerson, S.; Walter, M.; Banerjee, A.;
Teller, S.; and Roy, N. 2011. Understanding natural language
commands for robotic navigation and mobile manipulation.
In AAAI.
Torabi, F.; Warnell, G.; and Stone, P. 2018. Behavioral
Cloning from Observation. In IJCAI.
Toro Icarte, R.; Klassen, T. Q.; Valenzano, R.; and McIlraith,
S. A. 2018. Teaching Multiple Tasks to an RL Agent Using
LTL. In AAMAS.
Vazquez-Chanlatte, M.; Jha, S.; Tiwari, A.; Ho, M. K.; and
Seshia, S. 2018. Learning task specifications from demon-
strations. In NeurIPS.
Winder, J.; Milani, S.; Landen, M.; Oh, E.; Parr, S.; Squire,
S.; Matuszek, C.; et al. 2020. Planning with abstract learned
models while learning transferable subtasks. In AAAI.
Zhi-Xuan, T.; Mann, J. L.; Silver, T.; Tenenbaum, J. B.; and
Mansinghka, V. K. 2020. Online bayesian goal inference for
boundedly-rational planning agents. In NeurIPS.
Ziebart, B. D.; Bagnell, J. A.; and Dey, A. K. 2010. Modeling
interaction via the principle of maximum causal entropy. In
ICML.
Ziebart, B. D.; Maas, A. L.; Bagnell, J. A.; and Dey, A. K.
2008. Maximum entropy inverse reinforcement learning. In
AAAI.

Supplementary Material for
Learning Rational Subgoals from Demonstrations and Instructions

First, we elaborate how A∗ search is performed on the FSM-augmented transition models. We also discuss representation
choices of RSGs, as well as the optimality, complexity and scalability of the search algorithms. Recall that we are using dynamic
programming obtain deterministic transitions, and there are other formulations such as using stochastic transitions, we talk
about the comparison between our formulation and others in this section. In addition, we provide details for the dependency
discovering algorithm and hierarchical search algorithm used in planning for final goals.

Second, we discuss details about datasets and how we process the data, including how the features are extracted from the state
representations. We also provide the list of task descriptions covered in each data split.

Next, we provide implementation details for baselines, and then discusses the limitation and future work of RSGs.

Implementation Details of RSGs
Re-parameterize 1−Go(·) using a separate neural network. In practice, instead of directly using 1−Go(·) to evaluate the
probability that a subgoal has not been met, we parameterize 1−Go(·) using a separate neural network Io(·) that has the same
architecture as Go(·). We observe that this re-parameterization stabilizes the training. In performance time, we will only be using
the goal classifier Go and ignores the Io.

Empirically, we find that when using a single subgoal classifier instead of separate classifiers for I and G, some classifiers
usually get stuck at local optima. As a result, the overall planning performance, on average, drops from 99.6% to 75%. We
hypothesize that this is because using separate parameterization allows a broader set of possible solutions to the original problem,
which are practically equivalently helpful for planning. As a concrete example, consider the subgoal ”mining-wood.”

If we use only the G and 1−G parameterization, the only feasible solution is:

G1 = [wood in inventory]

However, if we use separate parameterizations, the following solution will also be accepted:

I2 = [tree on map and axe in inventory and wood not in inventory]

G2 = [tree on map and axe in inventory and wood in inventory]

Note that, during planning, both classifiers G1 and G2 have the same effects, but the relaxed parameterization allows a broader
set of solutions.

FSM-A∗

We have implemented a extended version of the A∗ algorithm to handle FSM states in Crafting World.

A∗ at each FSM node. We start with the A∗ search process happening at each FSM node. For a given FSM state, the A∗ search
extends the tree search in two stages. The first stage lasts for b = 3 layers during training and b = 4 layers during testing. In the
first b layers of the search tree, we run a Breadth-First-Search so that every possible path with length b is explored. Then on
the second stage lasts for c = 15 layers during training and 25 layers in testing. In layer d ∈ [b+ 1, b+ c], we run A* from the
leaves in the first stage based on the heuristic for each node. By enforcing the exploration at the early stage, we avoid imperfect
heuristic from misguiding the A* search at the beginning. For each FSM node v and each layer d, we only keep the top k = 10.
Finally, we run the value iteration on the entire search tree.

To accelerate this search process, for all tasks t in the training set, we have initialized a dedicated value approximator Vt(s̄),
conditioned on the historical state sequence. During training, we use the value iteration result on the generated search tree to
supervise the learning of this approximator Vt. Meanwhile, we use the value prediction of Vt as the heuristic function for node
pruning. During test, since we may encounter unseen tasks, the A∗-FSM search uses a uniform heuristic function h ≡ 0.

Search on an FSM. For a given initial state s0 and task description t, we first build FSMt and add the search tree node (s0, v0)
to the search tree, where v0 is the initial node of the FSM. Then we expand the search tree nodes (s, v) by a topological order of v.
It has two stages. First, for each FSM node v, we run up to 5000 steps of A∗ search. Next, for all search tree nodes (s, v) at FSM
node v, we try to make a transition from (s, v) to (s, v′) where (v, v′) is a valid edge in FSMt. Finally, we output a trajectory
ending at the FSM node vT with minimum cost.

Optimality of the A* algorithm on FSM. In the current implementation, RSGs might return sub-optimal solutions even with
a perfect heuristic, because RSGs balance the expanded nodes across all FSM nodes: it first samples an FSM node and then
expand a search tree node with the best heuristic value on that node.

The optimality can be guaranteed by either of the following simple modifications, although at the cost of possibly increasing
the running time:
• Always expand the search node with the globally best admissible heuristic value. (Because our heuristic is learned, this may

not be practical.)
• Keep expanding nodes, even after finding a plan, until none of the unexpanded search tree nodes across all subgoal nodes in

the FSM have better heuristic values than the current best solution.

Transitions on FSM

Algorithm 3: The dynamic programming for computing score(s̄, ā, t; θ) given Go(·; θ) and Rat(si, vi, ai, t; θ).
Initialize f [1..n, 0..T] to −∞
Topological sort all FSM nodes v0..T so that for all 0 ≤ i < j ≤ T , there is no path from vj to vi on FSM. Clearly v0 is still
the start node and vT is the terminate node.
f [n, T]← 0
for i = n..1 do

for j = T..0 do
if i < n then

f [i, j]← Rat(si, vj , ai, t; θ) + f [i+ 1, j]
end if
for dok = 0..T :

if (vj , vk) ∈ FSM transitions then:
f [i, j]← maxf [i, j], logGvj (si; θ) + log(1−Gvk(si; θ) + f [i+ 1, k]

end if
end for

end for
end for
Return score(s̄, ā, t; θ) = f [1, 0]

When encoding transitions on FSM, we use dynamic programming † to select a transition that maximize our score. Algorithm
3 shows the pseudo-code of the dynamic programming. If we consider Iv and Gv as “soft” probabilities, the computation of
score finds s̄′ and ā′ that maximize the rationality of primitive actions and the likelihood that FSM transitions are successful. We
use score(s̄, ā, t) to rank all candidate tasks.

There is another formulation which is to consider the stochastic transitions using Gv as probabilities. These two formulations
can be unified using a framework of latent transition models, though they are computed using different DP algorithms and may
lead to different results.

First of all, these two formulations are equivalent when the goal classifiers are binary (0/1). When the classifiers are
approximated by ”soft” functions that indicate the probability they are satisfied, the two formulations correspond to two
approaches of integrating reward (i.e. rationality in our model). The stochastic transition formulation computes the expected
rationality, and our formulation can be viewed as an approximation of maximum-likelihood estimated rationality – we take
maxτ λ log Pr(transitions in τ are successful)+Rationality(s̄, ā, τ). It would be an interesting extension to adopt the stochastic
transition formulation (i.e., Eτλ log Pr(transitions in τ are successful) +Rationality(s̄, ā, τ)) and use a stochastic planner or
MDP solver, although the planning time might be substantially increased.

Second, even if these two approaches behave differently in some cases, but it is unclear which one is better: this is a fundamental
challenge in planning: how should the robot decide whether it has finished a task if there is no indication (such as rewards) from
the environment?

Discover and search with dependencies
Evaluate goal classifiers when computing first(s̄, o) for discovering dependencies. Recall that when discovering the
dependencies, we need to compute first(s̄, o), the smallest index i such that Go(si) is true. We need to round Go(si) to Boolean
value because we internally use the soft version of Go(·).

For each subgoal o, we evaluate Go on all states in the training set to obtain the minimum and maximum output MinGo and
MaxGo, and we consider Go(si) to evaluate to true iff Go(si) ≥

√
MinGo ·MaxGo.

†The dynamic programming is similar to Dynamic time warping(DTW) warping trajectories into sequential subgoals, but the “cost” is
computed at each segment instead of at matched positions.

Tuning hyperparameters. There are several hyper-parameters that need to be tuned: λ, α, γ, β, and we discuss them separately
below:

• λ is determines the importance of satisfying the transition condition when transiting compared to regular action cost. In the
environment, the cost of a single move C(s, a) is set to 0.1, and λ is set to 1.

• α is called the inverse rationality, the higher α, the more rationality is assumed of the agent i.e. the agent is assume to take the
optimal action with higher strategy. We set α = 1 in our experiments.

• λ, α and the environmental action costs jointly determine the weight of FSM transitions, as well as the tolerance of
suboptimality in the demonstrations (the higher α the lower tolerance). Our model is not sensitive to α (setting 0.1 < α < 10
have similar performance) because the trajectories in our dataset are close to optimal, and our model is a bit sensitive to the
ratio of λ to the action cost. We found that expected-number-of-steps-per-subgoal × action-cost is a good value for λ—it
gives about the same weight to the transition appropriateness and the rationality along the path to achieve it.

• γ is the weight of the classification loss in the loss function J (θ). We set γ = 0.1 and we found that 0.01 < γ < 0.1 all work
well.
β is to adjust the base for the softmax function for the classification, which is set to 1. Note that β and γ jointly determine the
weight of classification loss. Similarly, we have found that 0.1 < β < 1 all work well.

Scalability and complexity of instruction generating. Meanwhile, the efficiency of our hierarchical search can be justified
theoretically, even at the worst case when we are doing enumerating search approach without well-discovered dependencies. Say
we have a subgoal setO, a primitive action setA, and each subgoal can be completed in l actions, and the task can be achieved by
sequencing m subgoals. Our two-level search generates up to O(|O|m) candidate subgoal sequences and searching each sequence
takes O(m|A|l) time. Thus, the worst-case complexity is O(m|O|m|A|l) which is still better than a pure primitive-level search,
which is at worst O(|A|ml), because the number of subgoals |O| is usually much smaller than |A|l (the number of all possible
length l sequences).

Dataset
Crafting World
Our Crafting World environment is based on the Crafting environment introduced by (Chen, Gupta, and Marino 2021). The
environment has a crafting agent that can move in a grid world, collect resources, and craft items. In the original environment,
every crafting rule is associated with a unique crafting station (e.g., paper must be crafted on the paper station). We modified the
rules such that some crafting rules can share a common crafting station (e.g., both arrows and swords can be crafted on a weapon
station). We add additional tiles: doors and rivers into the environment. Toggling a specific switch will open all doors. Otherwise,
the agent can move across doors when they are holding a key. Meanwhile, the agent can move across rivers when they have a
boat in their inventory.

We have used 47 object types in Crafting World including obstacles (e.g., river tiles, doors), items (e.g., axe), resources (e.g.,
trees), and crafting stations. We use 27 rules for mining resources and crafting items. When the agent is at the same tile as
another object, the toggle action will trigger the object-specific interaction. For item, the toggle action will pick up the object. For
resource, the toggle action will mine the resource if the agent has space in their inventory and has the required tool for mining
this type of resource (e.g., pickaxe is needed for mining iron ore).

State representation. The state representation of Crafting World consists of three parts.

1. The global feature contains the size of grid world, the location of the agent, and the inventory size of the agent.
2. The inventory feature contains an unordered list of objects in the agent’s inventory. Each of them is represented as a one-hot

vector indicating its object type.
3. The map feature contains all objects on the map, including obstacles, items, resources, and crafting stations. Each of them is

represented by a one-hot type encoding, the location (as integer values), and state (e.g., open or closed for doors).

Action. In Crafting World, there are 5 primitive level actions: up, down, left, right, and toggle. The first four actions will move
the agent in the environment, while the toggle action will try to interact with the object in the same cell as the agent.

State feature extractor. Since our state representation contain a varying number of objects, we extract a vector representation
of the environment with a relational neural network: Neural Logic Machines (Dong et al. 2019).

Concretely, we extract the inventory feature and the map feature separately. For each item in the inventory, we concatenate its
input representation (i.e., the object type) with the global input feature. We process each item with the same fully-connected
layer with ReLU activation. Following NLM (Dong et al. 2019), we use a max pooling operation to aggregate the feature for all
inventory objects, resulting in a 128-dim vector. We use a similar architecture (but different neural network weights) to process
all objects on the map. Finally, we concatenate the extracted inventory feature (128-dim), the map feature (128-dim), and the
global feature (4-dim) as the holistic state representation. Thus, the output feature dimension for each state is 260.

Primitive

grab-pickaxe grab-axe grab-key toggle-switch
craft-wood-plank craft-stick craft-shears craft-bed
craft-boat craft-sword craft-arrow craft-cooked-potato
craft-iron-ingot craft-gold-ingot craft-bowl craft-beetroot-soup
craft-paper mine-gold-ore mine-iron-ore mine-sugar-cane
mine-coal mine-wood mine-feather mine-wool
mine-potato mine-beetroot

Compositional

grab-pickaxe grab-axe
grab-key toggle-switch
mine-wood then craft-wood-plank craft-wood-plank then craft-stick
craft-iron-ingot or craft-gold-ingot then craft-shears mine-wool and craft-wood-plank then craft-bed
craft-wood-plank then craft-boat craft-iron-ingot and craft-stick then craft-sword
mine-feather and craft-stick then craft-arrow mine-potato and mine-coal then craft-cooked-potato
mine-iron-ore and mine-coal then craft-iron-ingot mine-gold-ore and mine-coal then craft-gold-ingot
craft-wood-plank or craft-iron-ingot then craft-bowl craft-bowl and mine-beetroot then craft-beetroot-soup
mine-sugar-cane then craft-paper grab-pickaxe then mine-gold-ore
grab-pickaxe then mine-iron-ore grab-pickaxe or grab-axe then mine-sugar-cane
grab-pickaxe then mine-coal grab-axe then mine-wood
craft-sword then mine-feather craft-shears or craft-sword then mine-wool
grab-axe or mine-coal then mine-potato grab-axe or grab-pickaxe then mine-beetroot

Novel

1. mine-sugar-cane then craft-paper
2. mine-potato and (gran pickaxe then mine-coal) and craft-cooked-potato
3. mine-beetroot and (grab-axe then mine-wood then craft-wood-plank then craft-bowl) then craft-
beetroot-soup
4. grab-axe then mine-wood then craft-wood-plank then grab-pickaxe then mine-iron-ore and mine-
coal then craft-iron-ingot then craft-shears then mine-wool then craft-bed
5. grab-axe then mine-wood then craft-wood-plank then craft-stick then grab-pickaxe then mine-
iron-ore and mine-coal then craft-iron-ingot then craft-sword then mine-feather then mine-wood
then craft-wood-plank then craft-stick then craft-arrow
6. grab-key then grab-axe
7. toggle-switch then mine-beetroot
8. grab-axe then mine-wood then craft-wood-plank then craft-boat then mine-sugar-cane
9. grab-axe then mine-wood then craft-wood-plank then craft-boat then grab-pickaxe
10. grab-key then grab-axe then mine-wood then craft-wood-plank then craft-boat then mine-potato
11. grab-key or (grab-axe then mine-wood then craft-wood-plank then craft-boat) then grab-pickaxe
then mine-gold-ore
12. grab-axe then mine-wood then craft-wood-plank then craft-boat then grab-key or toggle-switch
then grab-pickaxe then mine-iron-ore and mine-coal then craft-iron-ingot

Table 2: Task descriptions in the primitive, compositional and novel sets for the Crafting World.

Task definitions. We list the task descriptions in the primitive, the compositional, and the novel splits Table 2. Table 3 lists 8
final goals and corresponding full instructions that are used in search for a single final goal.

Playroom
We build our Playroom environment following Konidaris et al. (Konidaris, Kaelbling, and Lozano-Perez 2018). Specifically, we
have added obstacles into the environment. The environment contains an agent, 6 effectors (a ball, a bell, a light switch, a button
to turn on the music, a button to turn off the music and a monkey), and a fix number of obstacles. The agent and the effectors
have fixed shapes. Thus, their geometry can be fully specified by their location and orientation. For simplicity, we have also fixed
the shape and the location of the obstacles.

State representation. We represent the pose of the agent by a 3D vector including the x, y coordinates (real-valued) and
its rotation (real-valued, in [−π, π). The state representation consist of the pose of the agent (as a 3-dimensional vector) and
the locations of six effectors (as 6 2-dimensional vectors). Note that the state representation does not contain the shapes nor
the locations of obstacles as they remain unchanged throughout the experiment. We concatenate these 7 vectors as the state
representation.

Final Goal Steps Example full instruction

mine-wood 2 grab-axe then mine-wood
craft-paper 2 mine-sugar-cane then craft-paper
craft-beetroot-soup 3 (mine-beetroot and craft-bowl) then craft-beetroot-soup
craft-bed 3 (craft-wood-plank and mine-wool) then craft-bed

craft-gold-ingot 4 grab-pickaxe then (mine-gold-ore and mine-coal)
then craft-gold-ingot

craft-boat 4 grab-axe then mine-wood then craft-wood-plank
then craft-boat

craft-cooked-potato 4 ((grab-pickaxe then mine-coal) and mine-potato)
then craft-cooked-potato

craft-shears 5 grab-pickaxe then (mine-coal and mine-iron-ore)
then craft-iron-ingot then craft-shears

Table 3: Task descriptions used in search for a single final goal in Crafting World.

Action. The agent has a 3-dimensional action space: [−1, 1]3. That is, for example, at each time step, the agent can at most
move 1 meter along the x axis. We perform collision checking when the agent is trying to make a movement. If an action will
result in a collision with objects or obstacles in the environment, the action will be treated as invalid and the state of the agent
will not change.

Task definitions. We list the task descriptions in each of the primitive, compositional and novel set of the Playroom in Table 4

Primitive

play-with-ball ring-bell turn-on-light
touch the mounkey turn-off-music turn-on-music

Compositional (designed meaningful tasks)

play-with-ball
turn-on-light then ring-bell
turn-on-music and play-with-ball then touch the monkey
play-with-ball then turn-on-light
turn-on-music and play-with-ball then turn-off-music
turn-on-music or play-with-ball
turn-off-music then play-with-ball then turn-on-music
turn-on-music and play-with-ball and turn-on-light then ring-bell

Novel (randomly sampled)

play-with-ball then turn-on-light or ring-bell
turn-on-music then turn-on-light
turn-on-music then turn-on-light
play-with-ball then touch the monkey
turn-on-music then turn-off-music
turn-on-music and ring-bell then touch the monkey
ring-bell then touch the monkey then turn-on-light
turn-on-light and (ring-bell or turn-on-music) then play-with-ball

Table 4: Task descriptions in the primitive, compositional and novel sets for the Playroom.

Baseline Implementation Details
In this section, we present the implementation details of RSGs and other baselines. Without further notes, through out this
section, we will be using the same LSTM encoder for task descriptions in T L, and the same LSTM encoder for state sequences.
The architecture of both encoders will be presented in Appendix .

LSTM
Task description encoder. We use a bi-directional LSTM (Hochreiter and Schmidhuber 1997) with a hidden dimension of 128
to encode the task description. The vocabulary contains all primitive subgoals, parentheses, and three connectives (and, or, and
then). We perform an average pooling on the encoded feature for both directions, and concatenate them as the encoding for the
task description. Thus, the output dimension is 256.

State sequence encoder. For a given state sequence s̄ = {si}, we first use a fully-connected layer to map each state si into a
128-dimensional vector. Next, we feed the sequence into a bi-directional LSTM module. The hidden dimension of the LSTM is
128. We perform an average pooling on the encoded feature for both directions, and concatenate them as the encoding for the
state sequence.

Training. In our LSTM baseline for task recognition, we concatenate the state sequence feature and the task description feature,
and use a 2-layer multi-layer perceptron (MLP) to compute the score of the input tuple: (trajectory, task description). The LSTM
model is trained for 100 epochs on both environments. Each epoch contains 30 training batches that are randomly sampled from
training data. The batch size is 32. We use the RMSProp optimizer with a learning rate decay from 10−3 to 10−5.

Inverse Reinforcement Learning (IRL)
The IRL baseline uses an LSTM model to encode task descriptions. We use different parameterizations for the reward function
and the Q function in two datasets.

Crafting World Since the task description may have complex temporal structures, the reward value does not only condition on
the current state and but all historical states. Therefore, instead of Q(s, a|t) and R(s, a, s′|t), we use Q(s̄, a|t) and R(s̄, a, s′|t)
to parameterize the Q function and reward function, where s is the current state, a the action, t the task description, s′ the next
state, and s̄ the historical state sequence from the initial state to the current state.

We use neural networks to approximate the Q function and reward function. For both of them, s̄ is first encoded by an
LSTM model into a fixed-length vector embedding. We simply concatenate the historical state encoding and the task description
encoding, and then use a fully-connected layer to map the feature into a 5-dimensional vector. Each entry corresponds to the Q
value or the reward value for a primitive action.

Playroom The Q function and reward function in Playroom also condition on all historical states. In Playroom, we parameterize
the value of each state: V (s̄), instead of Q(s̄, a). We parameterize R(s̄, a, s′) as R(s̄, s′).

The input to our reward function network is composed of three parts: the vector encoding of the historical state sequence, the
vector encoding for the next state s′, and the task description encoding. We concatenate all three vectors and run a fully-connected
layer with a logSigmoid activation function.‡

In Playroom, since we do not directly parameterize the Q value for all actions in the continuous action space, in order to
sample the best action at each state s for plan execution, we first randomly sample 20 valid actions from the action space (i.e.,
actions that do not lead to collision), and choose the action that maximizes the Q function: Q(s̄ ∪ s′, a), where s̄ is the historical
state seuqnce and s′ is the next state after taking a.

Value iteration. Both environments have a very large (Crafting World) or even infinite (Playroom) state space. Thus it is
impossible to run value iteration on the entire state space. Thus, at each iteration, for a given demonstration trajectory (s̄e, āe),
we construct a self exploration trajectory (s̄p, āp) that share the same start state as s̄e §. We run value iteration on {s̄e} ∪ {s̄p}.
For states not in this set, we use the Q function network to approximate their values.

Training. For both Crafting World and Playroom, we train the IRL model for 60 epochs. We set the batch size to be 32 and
each epoch has 30 training batches. We use a replay buffer that can store 100,000 trajectories. For both environments, we use the
Adam optimizer with a learning rate decay from 10−3 to 10−5. We have found the IRL method unstable to train in the Playroom
environment. Thus, in Playroom, we use a warm-up training procedure. In the first 18(30%) epochs, we set γ = 0 for a “warm
start”, and for rest of the epochs we use γ = 0.5, where γ is the discount factor in the Q function.

‡We have experimented with no activation function, Sigmoid, and logSigmoid activations, and found that the logSigmoid activation works
the best.

§Since running self-exploration in Playroom is too slow, in practice, we only generate self-exploration trajectories for 4 trajectories in the
input batch.

Model #Epochs Crafting World Playroom

Training Time
(minute/epoch)

Planning Time
(second/sample)

Training Time
(minute/epoch)

Planning Time
(second/sample)

RSG 60 17.0 4.6962 32.4 0.4313
LSTM 200 0.4 N/A 0.2 N/A
IRL 60 34.8 0.7269 7.1 23.0187
BC 150 0.3 0.1615 0.4 0.1688
BC(FSM) 150 0.5 0.5423 0.5 0.1875

Table 5: Training time per epoch and planning time per sample for all models.

Behavior Cloning (BC)
BC learns a policy π(s̄, a|t) from data, where t is the task description, a a primitive action, and s̄ the historical state sequence.
The state sequence s̄ is first encoded by an LSTM model into a fixed-length vector embedding.

In Crafting World, we use a fully-connected layer with softmax activation to parameterize π(a|s̄, t). Specifically, the input to
the fully-connected layer is the concatenation of the vector encoding of s̄ and the vector encoding of the task description t.

In Playroom, we use two fully-connected (FC) layers to parameterize π(a|s̄, t). Specifically, we parameterize π(a|s̄, t) as a
Gaussian distribution. The first FC layer has a Tanh activation and parameterizes the mean µ of the Gaussian. The second FC
layer has a Sigmoid activation and paramerizes the standard variance σ2 of the Gaussian.

To make this model more consistent with our BC-FSM model, in both environments, we also train a module to compute the
termination condition of the trajectory. That is, a neural network that maps s̄ to a real value in [0, 1], indicating the probability of
terminating the execution. Denote the output of this network as stop(s̄). At each time step, the agent will terminate its policy
with probability stop(s̄). We modulate the probability for other actions a as π(a|s̄, t) · (1− stop(s̄))

For planning in Crafting World, at each step, we choose the action with the maximum probability (including the option
to “terminate” the execution). In Playroom, we always take the “mean” action parameterized by π(a|s̄, t) until we reach the
maximum allowed steps.

We then define the score of a task given a trajectory, score(s̄, ā, t), as the sum of log-probabilities of the actions taken at each
step. We train this model with the same loss and training procedure as RSGs. We train the model for 100 epochs using the Adam
optimizer with a learning rate decay from 10−3 to 10−5.

Behavior Cloning with FSM (BC-FSM)
BC-FSM represents task description as an FSM, in the same way as our model RSGs. It represents each subgoal o as a tuple:
⟨πo(sa), stopo(s)⟩, corresponding to the subgoal-conditioned policy and the termination condition.

Task recognition. The task recognition procedure for BC-FSM jointly segments the trajectory and computes the consistency
score between the task description and the input trajectory. In particular, our algorithm will assign an FSM state vi to each state
si, and insert several action. We use a dynamic programming algorithm (similar to the one used by our algorithm for RSGs) to
find the assignment that maximize the overall score:

score(s̄, v̄, ā) :=
∏
i

p(ai|si, vi, t)

p(ai|si, vi, t) =
{

π(ai|si, vi) · (1− stop(si, vi)) if a ∈ A is a primitive action
stop(si, vi) if a ∈ Et is an FSM transition

Planning. We use the same strategy as the basic Behavior Cloning model to choose actions at each step, conditioned on the
current FSM state. BC-FSM handles branches in the FSM in the same way as our algorithm for RSGs.

Computational Source Used for Training and Testing
In Table 5, we list the training time per epoch for our model and all baselines, and averaging time cost for each planning task
when testing. All models are trained until convergence, and we list the number of epochs after which the loss stops going down.

Generative Adversarial Imitation Learning
We have also tested the Generative Adversarial Imitation Learning (GAIL)(Ho and Ermon 2016) as a baseline on the planning
task on seen instructions. Since GAIL does not natually generalize to structured subgoals (FSMs), we used an LSTM to encode
the task description as in the BC and IRL baselines. On CraftingWorld, GAIL achieves 19.2% planning success rate on the Comp.
split, and 1.0% success rate on the Novel split. GAIL has a better performance compared to BC and BC-FSM, which we think is

because it explores the environment during training. There is still a large performance gap between GAIL and RSG, mainly
because GAIL does not have goal representations that helps compositional generalization.

